miércoles, 24 de junio de 2009

Tabla Periodica

La tabla periódica de los elementos
La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.
Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.


Tabla periódica de Mendeleiev

La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.
La noción de número atómico y la mecánica cuántica

La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
106 elementos: [editar] La noción de número atómico y la mecánica cuántica
La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
106 elementos:
Grupos

A las columnas verticales de la tabla periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre sí. Por ejemplo, los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son todos extremadamente no reactivos.
Numerados de izquierda a derecha, los grupos de la tabla periódica son:

Grupo 1 (IA): los metales alcalinos
Grupo 2 (IIA): los
metales alcalinotérreos
Grupo 3 al Grupo 12: los
metales de transición , metales nobles y metales mansos
Grupo 13 (IIIA): los
térreos
Grupo 14 (IVA): los
carbonoideos
Grupo 15 (VA): los
nitrogenoideos
Grupo 16 (VIA): los calcógenos o
anfígenos
Grupo 17 (VIIA): los
halógenos
Grupo 18 (VIIIA): los
gases nobles

Períodos

Artículo principal: Períodos de la tabla periódica
Las filas horizontales de la tabla periódica son llamadas períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca según su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio; ambos tienen sólo el orbital 1s.

La tabla también esta dividida en cuatro grupos, s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantánidos y actínidos. Esto depende de la letra en terminación de los elementos de este grupo, según el principio de Aufbau.



domingo, 21 de junio de 2009

¿Quien es Daniel Gabriel Fahrenheit?

Daniel Gabriel Fahrenheit




Escalas termométricas de Celsius y Fahrenheit


(Danzig, hoy Gdansk, actual Polonia, 1686-La Haya, 1736) Físico holandés. Pese a su origen polaco, Daniel Gabriel Fahrenheit permaneció la mayor parte de su vida en la República de Holanda. El fallecimiento repentino de sus padres, comerciantes acomodados, cuando contaba quince años de edad, propició su traslado a Amsterdam, por entonces uno de los centros más activos de fabricación de instrumentos científicos. Tras un viaje de ampliación de estudios por Alemania e Inglaterra y una estancia en Dinamarca, en cuya capital conoció a Roemer (1708), fue soplador de vidrio en Amsterdam y comenzó a construir instrumentos científicos de precisión.
Autor de numerosos inventos, entre los que cabe citar los termómetros de agua (1709) y de mercurio (1714), la aportación teórica más relevante de Fahrenheit fue el diseño de la escala termométrica que lleva su nombre, aún hoy la más empleada en Estados Unidos y hasta hace muy poco también en el Reino Unido, hasta la adopción por este país del sistema métrico decimal.
Fahrenheit empleó como valor cero de su escala la temperatura de una mezcla de agua y sal a partes iguales, y los valores de congelación y ebullición del agua convencional quedaron fijados en 32 y 212 respectivamente. En consecuencia, al abarcar un intervalo más amplio, la escala Fahrenheit permite mayor precisión que la centígrada a la hora de delimitar una temperatura concreta.
Publicó estos resultados el 1714, en Acta Editorum. Por entonces los termómetros usaban como líquido de referencia el alcohol, y a partir de los conocimientos que había adquirido Roemer de la expansión térmica de los metales, Fahrenheit pudo sustituirlo ventajosamente por mercurio a partir de 1716.







Gran conocedor de los trabajos de los científicos más relevantes del momento, Fahrenheit publicó en 1724 diversos trabajos en las Philosophical Transactions de la Royal Society, institución que lo acogió como miembro ese mismo año. Versan éstos sobre las temperaturas de ebullición de diversos líquidos, la solidificación del agua en el vacío y la posibilidad de obtener agua líquida a una temperatura menor que la de su punto de congelación normal.
Tras la muerte de Fahrenheit se decidió unificar su escala termométrica, tomando como referencia 213 grados para la temperatura de ebullición del agua y 98,6 en vez de 96 para la correspondiente al cuerpo humano.




¿Quien es Anders Celsius?



Anders Celsius



Anders Celsius (Uppsala, Suecia, 1701 - id., 1744), fue un físico y astrónomo sueco. Profesor de astronomía en la Universidad de Uppsala (1730-1744). Supervisó la construcción del Observatorio de Uppsala, del que fue nombrado director en 1740. En 1733 publicó una colección de 316 observaciones de auroras boreales. En 1736 participó en una expedición a Laponia para medir un arco de meridiano terrestre, lo cual confirmó la teoría de Isaac Newton de que la Tierra se achataba en los polos. En una memoria que presentó a la Academia de Ciencias Sueca propuso la escala centígrada de temperaturas, conocida posteriormente como escala Celsius.
Celsius es conocido como el inventor de la escala centesimal del termómetro. Aunque este instrumento es un invento muy antiguo, la historia de su graduación es de lo más caprichosa. Durante el siglo XVI era graduado como "frío" colocándolo en una cueva y "caliente" exponiéndolo a los rayos del sol estival o sobre la piel caliente de una persona. Más tarde el francés Réaumur y el alemán Gabriel
Fahrenheit en 1714, lo graduaron basándose en la temperatura del hielo en su punto de fusión y en la del vapor de agua al hervir, pero la escala alemana iba de 32 a 212 grados, mientras que la francesa lo hacía de 0 a 80 grados.
En
1742, Celsius propuso sustituir la escala alemana por otra cuyo manejo era más sencillo. Para ello creó la escala centesimal que iba de 0 a 100 centigrados. El punto correspondiente a la temperatura 100 ºC coincidía con el punto de congelación del agua mientras que la temperatura a 0 ºC equivalía a la temperatura de ebullición del agua a nivel del mar. La escala, por tanto, indicaba un descenso de temperatura cuando el calor aumentaba, al contrario de como es conocida actualmente. Su compatriota el científico Carlos von Linneo (conocido como Linneo) invertiría esta escala tres años más tarde.
El termómetro de Celsius fue conocido durante años como "termómetro sueco" por la comunidad científica, y tan sólo se popularizó el nombre de "termómetro Celsius" a partir del s. XIX.

Grado Celsius

Termómetro clínico graduado en Celsius.



Anders Celsius creador del grado con su nombre.
El grado Celsius, representado como °C, es la unidad creada por Anders Celsius en 1742 para su escala de temperatura. Se tomó como base para el kelvin y es la unidad más utilizada internacionalmente para las temperaturas que rondan la ordinaria y en ciencia popular y divulgación (en contextos técnicos se prefiere el kelvin). Es una de las unidades derivadas del Sistema Internacional de Unidades. En la actualidad se define a partir del kelvin del siguiente modo:
Las temperaturas de fusión y ebullición del agua destilada a una atmósfera de presión, en las escalas Celsius, Fahrenheit y Kelvin, son las siguientes:


Temperaturas de fusión y ebullición del agua a 1 atm de presión atmosférica
fusion--ebullición
escala Kelvin
273,15 K373,15 K

escala Celsius
0 °C100 °C

escala Fahrenheit
32 °F212 °F


A partir de su creación en 1750 fue denominado grado centígrado (se escribía °c, en minúscula). Pero en 1948 se decidió el cambio en la denominación oficial para evitar confusiones con la unidad de ángulo también denominada grado centígrado (grado geométrico), aunque la denominación previa se sigue empleando extensamente en el uso coloquial.
Hasta 1954 se definió tomando el valor 0 para la temperatura de congelación del agua y el valor 100 para la temperatura de ebullición —ambas medidas a una atmósfera de presión— y dividiendo la escala resultante en 100 partes iguales, cada una de ellas definida como 1 grado. Estos valores de referencia son muy aproximados pero no correctos por lo que, a partir de 1954, se define asignando el valor 0,01 °C a la temperatura del punto triple del agua y definiendo 1 °C como la fracción 1/273,16 de la diferencia con el cero absoluto.
Desde 1968 se define a partir del kelvin. Una diferencia de un grado Celsius es equivalente a una diferencia de un kelvin (K).

La magnitud de un grado Celsius (1 °C) es equivalente a la magnitud de :

TEMP(C)=TEMP(K)-273.15


La conversión de grados Celsius a grados Fahrenheit se obtiene multiplicando la temperatura en Celsius por 1,8 y sumando 32, esto da el resultado:

TEMP(F)=1.8*TEMP(C)+32

Para convertir Fahrenheit a Celsius:

TEMP(C)=TEMP(F)-32/1.8

miércoles, 17 de junio de 2009

Modelos Atomicos




En este apartado mostrare los modelos atomicos, con una imagen alusiva:







Modelo atómico de Thomson


Representación esquemática del modelo de Thompson.



El modelo atómico de Thomson, también conocido como el pastel de pasas, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón, antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un budín. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva.En 1906 Thompson recibio el premio nobel de fisica por este descubrimiento.
Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía interna, ésta provoca un cierto grado de vibración de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thomson es un modelo dinámico como consecuencia de la movilidad de los electrones en el seno de la citada estructura.
Si hacemos una interpretación del modelo atómico desde un punto de vista más macroscópico, puede definirse una estructura estática para el mismo dado que los electrones se encuentran inmersos y atrapados en el seno de la masa que define la carga positiva del átomo.
Dicho modelo fue superado luego del
experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.



















**************************************************************************************

Modelo atómico de Rutherford


El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

Introducción
Previamente a la propuesta de Rutherford, los físicos aceptaban que las
cargas eléctricas en un átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distrubución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.
Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciónes de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la
ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo:[1]
Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.

Importancia del modelo [editar]
La importancia del modelo de Rutherford residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.
Rutherford propuso que los
electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abría varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlo:
Por un lado se planteó el problema de como un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la
fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
Por otro lado existía otra dificultad proveniente de la
electrodinámica clásica que predice que una partícula cargada y acelerada, como sería necesario para mantenerse en órbita, radiaría radiación electromagnética, perdiendo energía. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10 − 10s, toda la energía del átomo se habría radiado, con la consiguiente caida de los electrones sobre el núcleo.[2] Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.
Aunque según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.

Modelos posteriores [editar]
El modelo atómico de Rutherford fue sustituido muy pronto por el de
Bohr. Bohr intentó explicar fenomenológicamente que sólo algunas órbitas de los electrones fueran posibles. Lo cual daría cuenta de los espectros de emisión y absorción de los átomos en forma de bandas discretas
El modelo de Bohr "resolvía" el problema proveniente de la electrodinámica postulando que sencillamente los electrones no radiaban, hecho que fue explicado por la
mecánica cuántica según la cual la aceleración promedio del electrón deslocalizado era nula.



************************************************************************************

Modelo atómico de John Dalton


Varios átomos y moléculas representados en A New System of Chemical Philosophy (1808) de John Dalton.
El modelo atómico de Dalton surgido en el contexto de la química fue el primer
modelo atómico con bases científicas, fue formulado en 1808 por John Dalton.

Introducción
La observación de las cantidades fijas en las que diferentes substancias químicas se combinaban para reaccionar químicamente, llevó a Dalton a la hipótesis de que existía una cantidad mínima o discreta de materia de cada substancia que se combinaba de manera fija con un cierto número de unidades fijas de otras substancias. Dalton observó que muchas substancias podían considerarse como compuestas por diferentes especies de materia, y consecuentemente clasificó a todas las substancias en:
Elementos, o substancias químicas simples formadas por una única especie de materia.
Substancias compuestas, que podían considerarse como formadas por proporciones fijas de diferentes elementos.
De acuerdo con esa idea Dalton llamó
átomo a la cantidad mínima de un elemento dado. Y más tarde se llamaría molécula a una combinación de un número entero de átomos que parecía ser la cantidad mínima de cada substancia que podía existir. El modelo atómico de Dalton asumía que los átomos eran de hecho indivisibles y sin estructura interna, de hecho, por eso escogió denominarlos a partir de la palabra griega 'ατομος' átomos 'sin partes, sin división'.

Éxitos del modelo
El modelo atómico de Dalton explicaba porqué las substancias se combinaban químicamente entre sí sólo en ciertas proporciones.
Además el modelo aclaraba que aún existiendo una gran variedad de substancias diferentes, estas podían ser explicadas en términos de una cantidad más bien pequeña de constituyentes elementales o elementos.
En esencia, el modelo explicaba la mayor parte de la química orgánica del
siglo XIX, reduciendo una serie de hechos complejos a una teoría combinatoria realmente simple.

Postulados de Dalton
Dalton explicó su teoría formulando una serie de enunciados simples:.
La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
Los átomos, al combinarse para formar compuestos guardan relaciones simples.
Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.

Insuficiencias de la teoría
La teoría de Dalton no podía explicar fenómenos como la electricidad, para los que sabemos debe admitirse que el átomo es divisible y está formado por partículas cargadas eléctricamente más pequeñas que él (
electrones y protones).
Tampoco explicaba satisfactoriamente porqué a pesar de que las substancias se combinaban entre sí en proporciones fijas, dadas dos substancias a veces podían existir dos o tres de estas proporciones. Por ejemplo el
carbono (C) y el oxígeno (O) pueden combinarse como monóxido de carbono CO o como dióxido de carbono CO2. Este hecho como sabemos hoy en día depende de la particular estructura interna de los átomos y como los electrones se disponen dentro de los átomos, correspondiendo cada compuesto diferente de dos elementos una disposición interna diferente de los enlaces químicos que forman los electrones.
Finalmente el modelo atómico de Dalton tampoco podía explicar la periodicidad de las propiedades químicas de los elementos, resumida en la
tabla periódica de Mendeléyev, más tarde interpretada gracias a la estructura electrónica interna en los átomos.
El modelo atómico de Dalton, fue superado por el
modelo atómico de Thomson que era capaz de explicar fenómenos eléctricos como los rayos catódicos y fenómenos nuevos como la radioactividad. Estos fenómenos no tenían explicación en el modelo de átomo indivisible de Dalton, pero eran explicables en el modelo de Thomson que postulaba la presencia de electrones (e-) y protones(p+).





************************************************************************************


Modelo atómico de Bohr

Diagrama del modelo atómico de Bohr.

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo que Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones.


Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.


En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.


Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.


Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.


Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.